Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[2'-(5-Chloro-2-oxidobenzylidene)benzenesulfonohvdrazide- $\kappa^2 N.O$]-[2'-(2-oxidobenzylidene)benzenesulfonohydrazide- $\kappa^2 N$,O]copper(II)

Hapipah M. Ali, Juahir Yusnita, Mohd. Razali Rizal and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 2 November 2007; accepted 3 November 2007

Key indicators: single-crystal X-ray study; T = 106 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.031; wR factor = 0.114; data-to-parameter ratio = 15.8.

The Cu^{II} atom (site symmetry $\overline{1}$) in the title compound, $[Cu(C_{13}H_{10}ClN_2O_3S)(C_{13}H_{11}N_2O_3S)]$, is N,O-chelated by the monoanionic ligands in a *trans*-CuN₂O₂ square-planar geometry. The 2'-(2-oxidobenzylidene)benzenesulfonohydrazide anion is disordered equally with the chlorine-substituted 2'-(5-chloro-2-oxidobenzylidene)benzenesulfonohydrazide anion. An intermolecular N-H···O hydrogen bond helps to stabilize the crystal structure.

Related literature

For the structure of a related ligand, see: Ali et al. (2007).

Experimental

Crystal data

 $[Cu(C_{13}H_{10}ClN_2O_3S) (C_{13}H_{11}N_2O_3S)]$ $M_r = 648.61$ Triclinic, $P\overline{1}$ a = 7.9801 (2) Å b = 9.9993 (2) Å c = 10.0823 (2) Å $\alpha = 104.393 (1)^{\circ}$

 $\beta = 111.091 \ (1)^{\circ}$ $\gamma = 104.635 \ (1)^{\circ}$ $V = 672.96 (3) \text{ Å}^3$ Z = 1Mo $K\alpha$ radiation $\mu = 1.12 \text{ mm}^{-1}$ T = 106 (2) K 0.55 \times 0.40 \times 0.21 mm

Data collection

F

Bruker APEX-II diffractometer	6161 measured reflections
(SADARS: Sheldrick 1996)	2769 reflections with $L > 2\sigma(I)$
$T_{\rm min} = 0.621, \ T_{\rm max} = 0.800$	$R_{\rm int} = 0.016$
Refinement	

reginement	
$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of
$wR(F^2) = 0.114$	independent and constrained
S = 1.20	refinement
3026 reflections	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
191 parameters	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$
1 restraint	

Table 1

Selected bond lengths (Å).

Cu1-O1	1.9062 (18)	Cu1-N1	1.9532 (17)

Table 2

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $N2-H2N\cdotsO1^{i}$ 0.87(3)2.13 (3) 2.723 (2) 125 (3) Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

The authors thank the University of Canterbury. New Zealand, for the diffraction measurements, and the Science Fund (12-02-03-2031) and the Fundamental Research Grant Scheme (FP064/2006 A) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2629).

References

- Ali, H. M., Laila, M., Wan Jeffrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1821-o1822.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2005). APEX2 (Version 2.0-2) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, m2937 [doi:10.1107/S1600536807055663]

 $[2'-(5-Chloro-2-oxidobenzylidene) benzenesulfonohydrazide-\kappa^2 N, O] [2'-(2-oxidobenzylidene) benzenesulfonohydrazide-\kappa^2 N, O] copper(II)$

H. M. Ali, J. Yusnita, M. R. Rizal and S. W. Ng

Comment

The title compound is a mixed-ligand compound in which the $C_{13}H_{11}O_3N_2S$ anion is disordered with respect to a $C_{13}H_{10}O_3N_2ClS$ anion. Although the synthesis had used 4-chlorobenzaldehyde as a starting material to prepare the Schiff base, this reagent is probably contaminated with an unknown quantity of benzaldehyde itself.

Experimental

Benzene sulfonylhydrazide (0.5 g, 0.3 mmol) and 4-chlorobenzaldehyde (0.5 g, 0.3 mmol) were dissolved in ethanol (50 ml). The reactants were heated under reflux for 1 h. The solvent was removed to give the Schiff base, which was purified by recrystallization from ethyl acetate. The organic compound (0.6 g, 2 mmol) dissolved in basified ethanol (50 ml) was heated with copper acetate (0.2 g m, 1 mmol) for 5 h. The solvent was removed and the product recrystallized from DMSO to yield golden blocks of (I).

Refinement

The refinement initially assumed full occupancy for the chlorine atom but the refinement gave a deep hole in its vicinity. The occupany was allowed to refine; as this refined to nearly 1/2, the occupancy was then set as half. The half-occupancy chlorine atom implies that (I) is a mixed ligand compound having a chlorine substitutent in 50% of the anions but none in the other 50%.

The carbon-bound H atoms were placed at calculated positions (C–H 0.95 Å), and were included in the refinement in the riding model approximation with U(H) set to $1.2U_{eq}(C)$. The amino hydrogen atom was located in a difference Fouier map, and was refined with a distance restraint of N–H 0.88±0.01 Å.

Figures

Fig. 1. Figure 1. View of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level, and H atoms are shown as spheres of arbitrary radii. The chlorine atom is statistically disordered with respect to a hydrogen atom and only one possible arrangement of these atoms is shown. The dashed lines denote the intramolecular hydrogen bond. Symmetry code (i) 1 - x, 1 - y, 1 - z.

[2'-(5-Chloro-2-oxidobenzylidene)benzenesulfonohydrazide- $\kappa^2 N$,O][2'-(2-oxidobenzylidene)benzenesulfonohydrazide- $\kappa^2 N$,O)]copper(II)

Crystal data

$[Cu(C_{13}H_{10}ClN_2O_3S)(C_{13}H_{11}N_2O_3S)]$	Z = 1
$M_r = 648.61$	$F_{000} = 331$
Triclinic, PT	$D_{\rm x} = 1.600 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.9801 (2) Å	Cell parameters from 4328 reflections
b = 9.9993 (2) Å	$\theta = 2.3 - 31.7^{\circ}$
c = 10.0823 (2) Å	$\mu = 1.12 \text{ mm}^{-1}$
$\alpha = 104.393 \ (1)^{\circ}$	T = 106 (2) K
$\beta = 111.091 \ (1)^{\circ}$	Irregular block, gold
$\gamma = 104.635 \ (1)^{\circ}$	$0.55 \times 0.40 \times 0.21 \text{ mm}$
$V = 672.96 (3) \text{ Å}^3$	

Data collection

Bruker APEX-II diffractometer	3026 independent reflections
Radiation source: medium-focus sealed tube	2769 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.016$
T = 106(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
φ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.621, \ T_{\max} = 0.800$	$k = -12 \rightarrow 12$
6161 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement	on	F^2
rectinentente	on	-

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.031$

 $wR(F^2) = 0.114$

S = 1.20

3026 reflections

191 parameters

1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0623P)^2 + 0.3245P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.47$ e Å⁻³ $\Delta\rho_{min} = -0.37$ e Å⁻³ Extinction correction: none

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Cu1	0.5000	0.5000	0.5000	0.02500 (14)	
C11	0.1626 (2)	-0.10643 (15)	-0.20334 (14)	0.0409 (3)	0.50
S1	0.45362 (9)	0.19783 (6)	0.68120 (8)	0.03327 (17)	
01	0.2978 (2)	0.41982 (17)	0.2953 (2)	0.0307 (4)	
N1	0.5095 (3)	0.3035 (2)	0.4831 (2)	0.0280 (4)	
N2	0.6053 (3)	0.2800 (2)	0.6200 (3)	0.0313 (4)	
H2N	0.691 (4)	0.363 (2)	0.695 (3)	0.042 (8)*	
O2	0.3354 (3)	0.05096 (19)	0.5676 (3)	0.0431 (5)	
O3	0.5800 (3)	0.2193 (2)	0.8345 (3)	0.0469 (5)	
C1	0.2593 (3)	0.2975 (3)	0.1829 (3)	0.0316 (5)	
C2	0.1386 (4)	0.2744 (3)	0.0309 (3)	0.0391 (6)	
H2	0.0805	0.3440	0.0118	0.047*	
C3	0.1027 (5)	0.1518 (3)	-0.0915 (3)	0.0448 (7)	
Н3	0.0224	0.1390	-0.1934	0.054*	
C4	0.1844 (5)	0.0473 (3)	-0.0649 (4)	0.0478 (7)	
H4	0.1626	-0.0349	-0.1493	0.057*	0.50
C5	0.2947 (4)	0.0620(3)	0.0803 (4)	0.0422 (6)	
Н5	0.3449	-0.0122	0.0967	0.051*	
C6	0.3359 (4)	0.1868 (2)	0.2076 (3)	0.0325 (5)	
C7	0.4457 (3)	0.1906 (2)	0.3564 (3)	0.0319 (5)	
H7	0.4740	0.1051	0.3635	0.038*	
C8	0.3039 (3)	0.2999 (3)	0.6841 (3)	0.0313 (5)	
С9	0.1162 (4)	0.2416 (3)	0.5700 (4)	0.0416 (6)	
Н9	0.0649	0.1455	0.4920	0.050*	
C10	0.0038 (4)	0.3275 (4)	0.5720 (4)	0.0526 (8)	
H10	-0.1263	0.2896	0.4945	0.063*	
C11	0.0797 (4)	0.4675 (4)	0.6855 (4)	0.0486 (7)	
H11	0.0015	0.5252	0.6848	0.058*	
C12	0.2683 (4)	0.5243 (3)	0.8000 (4)	0.0412 (6)	
H12	0.3194	0.6202	0.8781	0.049*	
C13	0.3824 (4)	0.4401 (3)	0.7998 (3)	0.0338 (5)	
H13	0.5123	0.4777	0.8777	0.041*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0256 (2)	0.01650 (19)	0.0427 (3)	0.01142 (15)	0.02107 (18)	0.01444 (16)
Cl1	0.0469 (7)	0.0369 (6)	0.0316 (6)	0.0084 (5)	0.0199 (5)	0.0059 (5)
S1	0.0386 (3)	0.0245 (3)	0.0532 (4)	0.0176 (2)	0.0279 (3)	0.0238 (3)
01	0.0314 (8)	0.0208 (7)	0.0440 (10)	0.0122 (6)	0.0192 (7)	0.0128 (7)
N1	0.0286 (9)	0.0212 (9)	0.0464 (11)	0.0137 (7)	0.0237 (9)	0.0174 (8)
N2	0.0302 (10)	0.0247 (9)	0.0500 (13)	0.0148 (8)	0.0229 (10)	0.0193 (9)
O2	0.0498 (11)	0.0220 (8)	0.0711 (13)	0.0155 (8)	0.0365 (10)	0.0228 (9)
O3	0.0577 (12)	0.0452 (11)	0.0599 (13)	0.0313 (10)	0.0304 (11)	0.0362 (10)

supplementary materials

C1	0.0313 (11)	0.0220 (10)	0.0476 (14)	0.0073 (9)	0.0247 (11)	0.0146 (10)
C2	0.0406 (13)	0.0291 (12)	0.0486 (15)	0.0070 (10)	0.0236 (12)	0.0172 (11)
C3	0.0509 (16)	0.0360 (14)	0.0426 (15)	0.0014 (12)	0.0267 (13)	0.0138 (12)
C4	0.0613 (18)	0.0286 (12)	0.0585 (18)	0.0068 (12)	0.0434 (16)	0.0101 (12)
C5	0.0540 (16)	0.0243 (11)	0.0586 (18)	0.0116 (11)	0.0406 (15)	0.0122 (12)
C6	0.0341 (12)	0.0198 (10)	0.0507 (15)	0.0083 (9)	0.0282 (11)	0.0126 (10)
C7	0.0330 (12)	0.0196 (10)	0.0563 (15)	0.0135 (9)	0.0300 (12)	0.0165 (10)
C8	0.0338 (12)	0.0271 (11)	0.0507 (14)	0.0154 (9)	0.0297 (11)	0.0225 (11)
C9	0.0356 (13)	0.0345 (13)	0.0595 (17)	0.0111 (11)	0.0297 (13)	0.0152 (12)
C10	0.0296 (13)	0.0598 (19)	0.074 (2)	0.0210 (13)	0.0277 (14)	0.0238 (17)
C11	0.0444 (15)	0.0522 (17)	0.077 (2)	0.0316 (14)	0.0429 (16)	0.0316 (16)
C12	0.0517 (16)	0.0337 (13)	0.0593 (17)	0.0220 (12)	0.0412 (14)	0.0201 (12)
C13	0.0374 (12)	0.0312 (12)	0.0470 (14)	0.0154 (10)	0.0280 (11)	0.0207 (11)

Geometric parameters (Å, °)

Cu1—O1 ⁱ	1.9062 (18)	С3—Н3	0.9500
Cu1—O1	1.9062 (18)	C4—C5	1.356 (5)
Cu1—N1 ⁱ	1.9532 (17)	C4—H4	0.9500
Cu1—N1	1.9532 (17)	C5—C6	1.416 (4)
Cl1—C4	1.721 (3)	С5—Н5	0.9500
S1—O2	1.430 (2)	C6—C7	1.424 (4)
S1—O3	1.434 (2)	С7—Н7	0.9500
S1—N2	1.676 (2)	C8—C9	1.375 (4)
S1—C8	1.760 (2)	C8—C13	1.392 (4)
O1—C1	1.321 (3)	C9—C10	1.392 (4)
N1—C7	1.300 (3)	С9—Н9	0.9500
N1—N2	1.427 (3)	C10-C11	1.383 (5)
N2—H2N	0.87 (3)	C10—H10	0.9500
C1—C2	1.406 (4)	C11—C12	1.383 (4)
C1—C6	1.425 (3)	C11—H11	0.9500
C2—C3	1.387 (4)	C12—C13	1.387 (3)
С2—Н2	0.9500	C12—H12	0.9500
C3—C4	1.395 (5)	С13—Н13	0.9500
01 ⁱ —Cu1—O1	180.0	C3—C4—Cl1	126.0 (3)
O1 ⁱ —Cu1—N1 ⁱ	91.01 (8)	C5—C4—H4	119.7
O1—Cu1—N1 ⁱ	88.99 (8)	C3—C4—H4	119.7
O1 ⁱ —Cu1—N1	88.99 (8)	C4—C5—C6	120.7 (3)
O1—Cu1—N1	91.01 (8)	С4—С5—Н5	119.6
N1 ⁱ —Cu1—N1	180.0	С6—С5—Н5	119.6
O2—S1—O3	120.67 (12)	C5—C6—C7	117.2 (2)
O2—S1—N2	106.95 (12)	C5—C6—C1	119.6 (3)
O3—S1—N2	103.56 (12)	C7—C6—C1	123.1 (2)
O2—S1—C8	108.21 (12)	N1—C7—C6	124.2 (2)
O3—S1—C8	110.29 (12)	N1—C7—H7	117.9
N2—S1—C8	106.12 (10)	С6—С7—Н7	117.9

C7—N1—N2	114.94 (18)		C9—C8—S1		119.4 (2)
C7—N1—Cu1	126.16 (17)		C13—C8—S1		118.46 (19)
N2—N1—Cu1	118.78 (15)		C8—C9—C10		118.1 (3)
N1—N2—S1	113.53 (15)		С8—С9—Н9		121.0
N1—N2—H2N	112 (2)		С10—С9—Н9		121.0
S1—N2—H2N	108 (2)		С11—С10—С9		120.7 (3)
O1—C1—C2	119.2 (2)		C11-C10-H10		119.7
O1—C1—C6	123.1 (2)		C9-C10-H10		119.7
C2—C1—C6	117.7 (2)		C12-C11-C10		120.6 (3)
C3—C2—C1	121.3 (3)		C12-C11-H11		119.7
C3—C2—H2	119.4		C10-C11-H11		119.7
C1—C2—H2	119.4		C11—C12—C13		119.5 (3)
C4—C3—C2	120.0 (3)		С11—С12—Н12		120.2
С4—С3—Н3	120.0		С13—С12—Н12		120.2
С2—С3—Н3	120.0		С12—С13—С8		119.1 (3)
C5—C4—C3	120.6 (3)		С12—С13—Н13		120.5
C5—C4—Cl1	113.5 (2)		C8—C13—H13		120.5
N1 ⁱ —Cu1—O1—C1	155.72 (18)		O1—C1—C6—C5		-177.2 (2)
N1—Cu1—O1—C1	-24.28 (18)		C2-C1-C6-C5		2.3 (3)
O1 ⁱ —Cu1—N1—C7	-159.40 (19))	O1—C1—C6—C7		6.2 (3)
O1—Cu1—N1—C7	20.60 (19)		C2-C1-C6-C7		-174.3 (2)
O1 ⁱ —Cu1—N1—N2	16.33 (15)		N2—N1—C7—C6		176.1 (2)
O1—Cu1—N1—N2	-163.67 (15)	1	Cu1—N1—C7—C6		-8.1 (3)
C7—N1—N2—S1	-85.6 (2)		C5-C6-C7-N1		173.5 (2)
Cu1—N1—N2—S1	98.25 (16)		C1-C6-C7-N1		-9.8 (4)
O2—S1—N2—N1	65.37 (18)		O2—S1—C8—C9		-10.6 (2)
O3—S1—N2—N1	-166.16 (16))	O3—S1—C8—C9		-144.6 (2)
C8—S1—N2—N1	-49.98 (19)		N2—S1—C8—C9		103.9 (2)
Cu1—O1—C1—C2	-164.03 (17)	1	O2—S1—C8—C13		171.64 (18)
Cu1—O1—C1—C6	15.5 (3)		O3—S1—C8—C13		37.7 (2)
O1—C1—C2—C3	176.4 (2)		N2-S1-C8-C13		-73.9 (2)
C6—C1—C2—C3	-3.1 (4)		C13—C8—C9—C10		0.2 (4)
C1—C2—C3—C4	1.1 (4)		S1—C8—C9—C10		-177.5 (2)
C2—C3—C4—C5	1.9 (4)		C8—C9—C10—C11		0.2 (5)
C2—C3—C4—Cl1	-177.3 (2)		C9-C10-C11-C12		-0.5 (5)
C3—C4—C5—C6	-2.6 (4)		C10-C11-C12-C13		0.5 (4)
Cl1—C4—C5—C6	176.62 (19)		C11—C12—C13—C8		-0.1 (4)
C4—C5—C6—C7	177.3 (2)		C9—C8—C13—C12		-0.3 (4)
C4—C5—C6—C1	0.5 (4)		S1—C8—C13—C12		177.43 (18)
Symmetry codes: (i) $-x+1, -y+1, -z+1$.					
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H2N····O1 ⁱ		0.87 (3)	2.13 (3)	2.723 (2)	125 (3)
Symmetry codes: (i) $-x+1, -y+1, -z+1$.					

